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F-Minor-Free Deletion

F-Minor-Free Deletion
Input: A graph G and a positive integer k .
Parameter: k .
Question: Does there exist a set S ⊆ V (G ) such that

|S | ≤ k and G \ S doesn’t contain any of
the graphs in F as a minor?

Examples:
Vertex Cover

Feedback Vertex Set

Vertex Planarization

Treewidth-η Deletion

Treedepth-η Deletion
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F-Minor-Free-Deletion

F-Minor-Free Deletion is FPT.
[Robertson and Seymour, Journal of Combinatorial Theory B]

If F contains a planar graph (Planar F-Minor-Free-Deletion)

Constant factor approximation algorithm [Fomin et al, FOCS 2012]
[]

f (F)kO(g(F)) kernel [Fomin et al, FOCS 2012]
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If F contains a planar graph (Planar F-Minor-Free-Deletion)

Constant factor approximation algorithm [Fomin et al, FOCS 2012]
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Constant factor approximation algorithm [Fomin et al, FOCS 2012]
2O(k)n2 algorithm [Kim et al, ICALP 2013]
f (F)kO(g(F)) kernel [Fomin et al, FOCS 2012]
kO(η) (Treewidth-η Deletion)

[Cygan et al, IPEC 2011]
k is the vertex cover of the input
kO(∆(F)) kernel

[Fomin et al, JCSS 2014]
k is the vertex cover of the input
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Open problem

Can we find a kernel for Planar F-Minor-Free Deletion of size
f (F)kc?
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Kernelization

(G, k)

Kernelization
A kernelization algorithm is a polynomial time algorithm that given as input
an instance (G , k) to the problem outputs an equivalent instance (G ′, k ′)
with k ′ ≤ f (k) and |V (G ′)|+ |E (G ′)| ≤ f (k).
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Our Results (Lower Bounds)

Let d ≥ 3 be a fixed integer and ε > 0.

If the parameterization by solution size k of one of the problems

1 {Kd+1}-Minor-Free Deletion,

2 {Kd+1,P4d}-Minor-Free Deletion, and

3 Treewidth-(d − 1) Deletion

admits a kernel with O(k
d
4−ε) vertices, then NP ⊆ coNP/poly.
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Compression

→
(G, k)

(G′, k′)

≤ f(k)

Compression
A compression algorithm is a polynomial time algorithm that given as input
an instance (G , k) of a problem P outputs an equivalent instance (G ′, k ′)
of a problem Q with k ′ ≤ f (k) and |V (G ′)|+ |E (G ′)| ≤ f (k).
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Degree-d polynomial-parameter transformation

→
(G, k)

(G′, k′)

≤ f(k)

Degree-d polynomial-parameter transformation
A degree-d polynomial-parameter transformation is a polynomial time
algorithm that given as input an instance (G , k) of a problem P outputs an
equivalent instance (G ′, k ′) of a problem Q with k ′ ∈ O(kd ).
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Exact d-Uniform Set Cover

Given:
A finite set U of size n,
an integer k ,
a family F ⊆ 2U of sets of size d

Asked:
F ′ ⊆ F of k sets such that each element of U is contained in exactly
one set of F ′ .

Theorem (Dell and Marx, SODA 2012)

For every fixed d ≥ 3 and ε > 0, there is no compression of size O(kd−ε)
for Exact d-Uniform Set Cover, unless NP ⊆ coNP/poly.
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Given:
A finite set U of size n,
an integer k ,
a family F ⊆ 2U of sets of size d

Asked:
F ′ ⊆ F of k sets such that each element of U is contained in exactly
one set of F ′ (non trivial only when k = n/d).

Theorem (Dell and Marx, SODA 2012)

For every fixed d ≥ 3 and ε > 0, there is no compression of size O(kd−ε)
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The reduction

U = {1, 2, . . . , n} and F . We construct G :

...
...

...

. . .

. . .

. . .

. . .

. . .

v1,1

v2,1

v3,1

vn,1 vn,k

v4,k

v3,k

v2,k

v1,k

v4,1

Archontia Giannopoulou (WCMCS) 10 / 30



The reduction

U = {1, 2, . . . , n} and F . We construct G :

...
...

...

. . .

. . .

. . .

. . .

. . .

Archontia Giannopoulou (WCMCS) 10 / 30



The reduction

U = {1, 2, . . . , n} and F . We construct G :

...
...

...

. . .

. . .

. . .

. . .

. . .

Archontia Giannopoulou (WCMCS) 10 / 30



The reduction

U = {1, 2, . . . , n} and F . We construct G :

...
...

...

. . .

. . .

. . .

. . .

. . .

K1
d−1

K2
d−1

K3
d−1

K4
d−1

Kn
d−1

Archontia Giannopoulou (WCMCS) 10 / 30



The reduction

U = {1, 2, . . . , n} and F . We construct G :

...
...

...

. . .

. . .

. . .

. . .

. . .

K1
d−1

K2
d−1

K3
d−1

K4
d−1

Kn
d−1

f1,X f2,X fk,X

for every X ∈
(n
d

)
\ F .

Archontia Giannopoulou (WCMCS) 10 / 30



The reduction

U = {1, 2, . . . , n} and F . We construct G :

...
...

...

. . .

. . .

. . .

. . .

. . .

K1
d−1

K2
d−1

K3
d−1

K4
d−1

Kn
d−1

f1,X f2,X fk,X

for every X ∈
(n
d

)
\ F . Finally, let k ′ = k(n − d).
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Our Results (Treedepth-η Deletion)

Theorem
For each fixed η, Treedepth-η-Deletion has a polynomial kernel
with O(k6) vertices: an instance (G , k) can be efficiently reduced to an
equivalent instance (G ′, k) with 2O(η2)k6 vertices.
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Why look into Treedepth-η-Deletion?

Excluded Graph Bounded Parameter

Treewidth

Treedepth
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Treedepth

Definition
td(G ) ≤ k if and only if there exists a rooted forest F of height at most k
such that G ⊆ clos(F ).

The closure of a rooted forest F is obtained the graph clos(F ) obtained
from F after adding edges between each vertex and its proper ancestors.

Archontia Giannopoulou (WCMCS) 13 / 30



Properties of Treedepth

Dη is minor-closed.

The class Fη = obs(Dη) consisting of the minor-obstructions of Dη is
finite. Thus Treedepth-η Deletion is equivalent to
Fη-Minor-Free Deletion.

In particular, P2η ∈ Fη and Treedepth-η Deletion is equivalent
to Planar Fη-Minor-Free Deletion.

Archontia Giannopoulou (WCMCS) 14 / 30



Reduction Rule 1 (Vertex Removal)

Lemma
Let (G , k) be an instance of Treedepth-η Deletion and let ` be an
integer. Let S ⊆ V (G ) such that NG (S) is a clique and td(G [S ]) ≤ η. For
every v ∈ NG (S), let X v

1 , . . . ,X
v
`+η ⊆ V (G ) induce connected subgraphs

of G such that:
1 ∀v ∈ NG (S), ∀i ∈ [`+ η] : td(G [X v

i ]) ≥ td(G [S ]) and v ∈ NG (X v
i ),

2 ∀v ∈ NG (S), the sets X v
1 , . . . ,X

v
`+η are pairwise disjoint and disjoint

from S, and
3 G − S has a minimum treedepth-η modulator containing ≤ ` vertices

of X ,
where X :=

⋃
v∈NG (S)

⋃
i∈[`+η] X

v
j . Then (G , k) is equivalent to the

instance (G − S , k).
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Reduction Rule 1 (Vertex Removal)

S

NG(S)v
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Reduction Rule 2 (Edge Addition)

Lemma
Let (G , k) be an instance of Treedepth-η Deletion and let ` be an
integer. Let X ⊆ V (G ) and let {u, v} ∈

(V (G)
2

)
\ E (G ). If the following

conditions hold:

1 the graph G [X ∪ {u, v}] contains at least `+ η internally
vertex-disjoint paths between u and v, and

2 G has a minimum treedepth-η modulator containing ≤ ` vertices of X ,

then (G , k) is equivalent to the instance (G + uv , k) obtained by adding
the edge uv.
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Reduction Rule 2 (Edge Addition)

u v
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Reduction Rule 3 (Edge removal)

Lemma
Let (G , k) be an instance of Treedepth-η Deletion and let ` be an
integer. Let S ⊆ V (G ) and let v ∈ V (G ) \ S such that NG (S) ⊆ NG [v ].
Let X1, . . . ,X`+η ⊆ V (G ) be connected subgraphs of G such that:

1 ∀i ∈ [`+ η] : td(G [Xi ]) ≥ td(G [S ]) and v ∈ NG (Xi ),
2 the sets X1, . . . ,X`+η are pairwise disjoint and disjoint from S, and
3 any graph obtained from G by removing edges between v and S has a

minimum treedepth-η modulator containing ≤ ` vertices of X ,
where X :=

⋃
i∈[`+η] Xj . Then (G , k) is equivalent to the instance (G ′, k),

where G ′ is obtained from G by removing all edges between v and S.
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Reduction Rule 3 (Edge removal)

S

NG(S)v
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Approximation Algorithm

Together with the Reduction Rules we need the following algorithm to
obtain the kernel for Treedepth-η Deletion.

Lemma
Fix η ∈ N. Given a graph G, one can in polynomial time compute a
subset S ⊆ V (G ) such that td(G − S) ≤ η and |S | is at most 2η times the
size of an optimal treedepth-η modulator of G .

[Gajarsky et al., ESA 2013]

Archontia Giannopoulou (WCMCS) 21 / 30



Overview

The kernel is obtained in two phases:

Decomposition of (G , k) to an equivalent instance (G ′, k ′)

Application of Reduction Rules to obtain an equivalent instance
(G ′′, k) of reduced size.
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Graph Decomposition
Let (G , k) be an of Treedepth-η Deletion.

For every p, q ∈ V (G ) where {p, q} /∈ E (G ), if there exist k + η
internally disjoint (p, q)-paths add {p, q} ∈ E (G ).
Using the approximation algorithm to find S such that td(G \ S) ≤ η.
Then |S | ≤ 2ηk . Let F denote the forest where G \ S ⊆ clos(F ).

S
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Graph Decomposition

For every p, q ∈ S where {p, q} /∈ E (G ) find a minimum
(p, q)-separator Yp,q with |Yp,q| < k + η.

S
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Graph Decomposition

Let Y =
⋃

{p,q}/∈E(G)

Yp,q. For every y ∈ Y add in Y all the proper

ancestors of y .

S
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Graph Decomposition

Let T be the roots of the forest F ′ obtained from F after removing Y .

S
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Graph Decomposition

While there is a vertex u0 ∈ T , where for the set V (Fu0) Reduction
Rule 1 is applicable, apply Reduction Rule 1 and remove u0 from T .

S
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Properties of the New Instance

Let (G , k) be an instance of Treedepth-η Deletion.
1 (G , k) is equivalent to (G ′, k)

2 |S | ≤ 2η · k .

3 |Y | ≤ η(2η · k)2 · (k + η).

4 For every u ∈ V (F ′) \ Y the graph G ′[F ′u] is connected.
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Properties of the New Instance

Let (G , k) be an instance of Treedepth-η Deletion.
1 Let T ′ := {u ∈ F ′ − Y | u is a root or π(u) ∈ Y }. The vertex sets of

the connected components of G ′ − (S ∪ Y ) are exactly the vertex sets
of the subtrees of F ′ rooted at members of T ′.

2 For every connected component C of G ′ − (S ∪ Y ), the
set NG ′(C ) ∩ S is a clique and for every minimal treedepth-η
modulator Z , Z ∩ V (C ) ≤ 2η.

3 The number of connected components of G ′ − (S ∪ Y ) is at most
(|S |+ |Y |+ |S |2 + |S | · |Y |+ η · |Y |) · (η + k).
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Bounding the Size of the Connected Components

Let T be the tree in F ′ with v as root.
While there are p, q ∈ N(Tv ) ∪ {v} with pq /∈ E (G ), joined by 3η
internally vertex disjoint paths in V (Tv ) ∪ {p, q}, add pq ∈ E (G ).
[Edge addition]

While there exist distinct children c0, . . . , c3η of v s.t. s ∈ NS(c0) 6= ∅
and NG [Tc0 ] ⊆ NG [s], td(G [Tci ]) ≥ G [Tc0 ] and s ∈ NG [Tci ], remove
the edges vu, u ∈ V (Tc0) [Edge Deletions]

While there exists a child c∗ of v s.t. NG [Tc∗ ] is a clique, and for
every w ∈ NG [Tc∗ ] there are 3η distinct children of v , cw

i 6= c∗,
i ∈ [3η] with td(G [Tcw

i
]) ≥ td(G [Tc∗ ]) and w ∈ NG [Tcw

i
], remove

Tc∗ from F and from G . [Vertex deletions]

Call the algorithm for every remaining child of v .
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The Size of the Reduced Components

By counting arguments that depend on the properties of the connected
components

|C | ≤ η · (2 · 3η · 2η)η(|S |+ 1)

This implies that
V (G ′) ∈ O(k6)
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Summarizing

When F is one the following three graph classes
I {Kd+1}
I {Kd+1,P4d}
I Obstructions to Treewidth-(d − 1)

the size of the kernel parameterized by the solution size is Ω(k
d
4 − ε)

unless NP ⊆ coNP/poly.

The problem Treedepth-η Deletion parameterized by the
solution size admits a kernel with 2O(η2)k6 vertices.
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Open Problems

Does there exist a family F that does not contain planar graphs and
admits a polynomial size kernel?

Is it possible to obtain a dichotomy theorem characterizing for which
families F the problem Planar F-Minor-Free Deletion admits
uniformly polynomial kernels?

Obtain a kernel for Vertex Planarization.
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Thank you for your attention!
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